Methyl group assignment using pseudocontact shifts with PARAssign

نویسندگان

  • Mathilde Lescanne
  • Simon P Skinner
  • Anneloes Blok
  • Monika Timmer
  • Linda Cerofolini
  • Marco Fragai
  • Claudio Luchinat
  • Marcellus Ubbink
چکیده

A new version of the program PARAssign has been evaluated for assignment of NMR resonances of the 76 methyl groups in leucines, isoleucines and valines in a 25 kDa protein, using only the structure of the protein and pseudocontact shifts (PCS) generated with a lanthanoid tag at up to three attachment sites. The number of reliable assignments depends strongly on two factors. The principle axes of the magnetic susceptibility tensors of the paramagnetic centers should not be parallel so as to avoid correlated PCS. Second, the fraction of resonances in the spectrum of a paramagnetic sample that can be paired with the diamagnetic counterparts is critical for the assignment. With the data from two tag positions a reliable assignment could be obtained for 60% of the methyl groups and for many of the remaining resonances the number of possible assignments is limited to two or three. With a single tag, reliable assignments can be obtained for methyl groups with large PCS near the tag. It is concluded that assignment of methyl group resonances by paramagnetic tagging can be particularly useful in combination with some additional data, such as from mutagenesis or NOE-based experiments. Approaches to yield the best assignment results with PCS generating tags are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence-specific assignment of methyl groups from the neuronal SNARE complex using lanthanide-induced pseudocontact shifts

Neurotransmitter release depends critically on the neuronal SNARE complex formed by syntaxin-1, SNAP-25 and synaptobrevin, as well as on other proteins such as Munc18-1, Munc13-1 and synaptotagmin-1. Although three-dimensional structures are available for these components, it is still unclear how they are assembled between the synaptic vesicle and plasma membranes to trigger fast, Ca2+-dependen...

متن کامل

Sequence-specific and stereospecific assignment of methyl groups using paramagnetic lanthanides.

Pseudocontact shifts (PCSs) induced by a site-specifically bound paramagnetic lanthanide ion are shown to provide fast access to sequence-specific resonance assignments of methyl groups in proteins of known three-dimensional structure. Stereospecific assignments of Val and Leu methyls are obtained as well as resonance assignments of all other methyls, including Met epsilonCH3 groups. No prior a...

متن کامل

Weak alignment of paramagnetic proteins warrants correction for residual CSA effects in measurements of pseudocontact shifts.

Paramagnetic metal ions can induce molecular alignment with respect to the magnetic field. This alignment generates residual anisotropic chemical shifts (RACS) due to nonisotropic averaging over the molecular orientations. Using a 30 kDa protein-protein complex, the RACS effects are shown to be significant for heteronuclear spins with large chemical shift anisotropies, lanthanide ions with larg...

متن کامل

13C-detected HN(CA)C and HMCMC experiments using a single methyl-reprotonated sample for unambiguous methyl resonance assignment.

Methyl groups provide an important source of structural and dynamic information in NMR studies of proteins and their complexes. For this purpose sequence-specific assignments of methyl 1H and 13C resonances are required. In this paper we propose the use of 13C-detected 3D HN(CA)C and HMCMC experiments for assignment of methyl 1H and 13C resonances using a single selectively methyl protonated, p...

متن کامل

PSEUDYANA for NMR structure calculation of paramagnetic metalloproteins using torsion angle molecular dynamics.

The program DYANA, for calculation of solution structures of biomolecules with an algorithm based on simulated annealing by torsion angle dynamics, has been supplemented with a new routine, PSEUDYANA, that enables efficient use of pseudocontact shifts as additional constraints in structure calculations of paramagnetic metalloproteins. PSEUDYANA can determine the location of the metal ion inside...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2017